
What They Forgot to Tell You About Machine
Learning with an Application to Pharmaceutical

Manufacturing
Kjell Johnson Max Kuhn

Predictive models (a.k.a. machine learning models) are ubiquitous in all stages
of drug research, safety, development, manufacturing, and marketing. The results
of these models are used inside and outside of pharmaceutical companies for the
purpose of understanding scientific processes and for predicting characteristics
of new samples or patients. While there are many resources that describe such
models, there are few that explain how to develop a robust model that extracts
the highest possible performance from the available data, especially in support of
pharmaceutical applications. This tutorial will describe pitfalls and best practices
for developing and validating predictive models with a specific application to a
monitoring a pharmaceutical manufacturing process. The pitfalls and best practices
will be highlighted to call attention to specific points that are not generally discussed
in other resources.

Introduction

It feels like machine learning (ML) is everywhere. Even after years of popularity, tools such as
ChatGPT1 have increased the visibility of ML and artificial intelligence even further. These
tools initially showed their use in image recognition (“Is there a cat in this picture?”) and
natural language processing (e.g., grammar correction sentence completion). New tools can
often take a textual prompt and, with varying levels of success, complete some tasks. Models
can be used to rewrite an author’s biography in iambic pentameter, write program code, or
describe the results of a visualization.

In terms of data analysis used in drug R&D, machine learning has been in a statistician’s
toolbox for some time. It has been used for making predictions during compound optimization,

1https://chat.openai.com

1

https://chat.openai.com/


target discovery, in silico modeling of absorption, distribution, metabolism, excretion, and
toxicology (ADMET) endpoints, etc.

This tutorial assumes that the reader has had some exposure to machine learning (a.k.a.
predictive modeling or statistical learning) and related techniques such as resampling. If not,
we suggest Hastie, Tibshirani, and Friedman (2017) for technical information and Kuhn and
Johnson (2013) for practical descriptions focused on applying these methods. For deep learning
methods, Goodfellow, Bengio, and Courville (2016) and Charu (2018) are good introductions.

Our goal is to discuss more realistic approaches to using machine learning in preclinical
applications, specifically Chemistry, Manufacturing, and Control (CMC) applications. The
structure takes a relatively ordinary experimental problem (predicting drug concentration
using spectroscopy) to frame a discussion about what machine learning can, can’t do, and
probably should do. The idea is that most machine learning training materials are not holistic
examinations of how the process actually works. While describing our analysis, we will highlight
“what they forgot to tell you” about these tools.

For example, it might make sense to discuss what the term “machine learning” means and
under what circumstances it is appropriate. Historically, it usually connotes a specific type of
black-block model, such as a neural network or support vector machine. This leads us to our
first what they forgot (WTF):

, WTF #1

Whether a model is a “machine learning model” depends on how it will be used rather
than the mathematical definition of the technique. If the goal of an analysis is to make
the most accurate prediction possible, it’s fair to use the ML label.

It is difficult to argue that ML models focus on making the most accurate prediction of a new
sample based on historical data. From that point of view, any sufficiently complex model that
performs sufficiently well. For example, a linear regression model could fit this definition by
including appropriate interactions or nonlinear terms, such as spline basis expansions. The
models most representative of the current zeitgeist are sophisticated and impenetrable methods
such as neural networks and boosted trees. However. . .

, WTF #2

You probably don’t need a complex black-box machine learning model (e.g. deep neural
networks, large ensemble models, etc.).

Why not? First, not all problems are purely prediction problems. Most black-box models used
for ML are excellent at prediction but poor at almost anything else. We have seen applications
where simple two-factor experimental data were analyzed using the random forest ensemble

2



method instead of a simple two-way ANOVA model. When it comes to judging what predictors
are important to the outcome(s), many machine learning models are probably not applicable.

Another reason is the potential limitations of experimental data. Sometimes, there is not enough
data to support fitting such a model. For example, if an unreplicated response surface design
were available, training a model and characterizing its efficacy with so few data points would be
difficult. Data size is a limitation, but there are other challenging data characteristics: irrelevant
predictors, measurement system noise, censored values, multicollinearity, and others.

For some, there is a significant urge to fit complex ML models since they often are the best choice
in completely different domains, such as the image analysis or generative prompt examples
given previously. These domains often have access to excessive amounts of non-tabular data.
These are data structures that do not naturally fit into the traditional rectangular data format
(e.g., spreadsheets or database tables). These models are often complex deep-learning neural
networks.

A disconnect occurs because most experimental data used in CMC applications are tabular (or
can be made to be tabular).

, WTF #3

Unless you are analyzing a large number of images, it is exceedingly unlikely that a
deep-learning model is your best option.

There is considerable anecdotal evidence that highly complex neural networks may not perform
well for reasonably sized tabular data sets. This is currently being examined more formally in
the literature (Kadra et al. 2021; Gorishniy et al. 2021; Borisov et al. 2022; Shwartz-Ziv and
Armon 2022). Experimental data in preclinical applications can often exhibit multicollinearity
between predictors and data measured with error. For novel data sets, we often do not know
which predictors have a relationship with the outcome, increasing the possibility that some
irrelevant predictors will be used to fit the model. In general, neural networks do not thrive in
these environments (Kuhn and Johnson 2013).

Simply put, deep learning models can be effective in specific scenarios but are inappropriate in
many other situations.

In this tutorial, we will discuss the process of constructing ML models for a specific tabular data
set. This process starts with understanding the available data’s predictors and responses. After
this initial understanding, we must then determine how to spend the data for the model-building
process. Specifically, some data will need to be used to learn the generalizable characteristics
that relate the predictors with the response (i.e., the training set). And other data will need
to be used to assess how well the model predicts new data (i.e., the test set). After splitting
the data, the predictors and/or the response may need to be pre-processed prior to modeling
to enable models to better extract the predictive signal. The next step is to select the types
of models which will be trained on the data. Each model has one or more parameters that

3



determine how predictors are related to the response. In general, we do not know a priori
which values of the tuning parameters are best. Therefore, a process must be implemented
that searches for an optimal parameter set. After identifying an optimal model, this model
is then evaluated on the test data to determine if the model can be trusted to predict new
yet-to-be-seen samples reliably.

Let’s look at a specific CMC application to facilitate the discussion further.

Experimental setting

The manufacturing process of a biological drug is complex and requires careful monitoring
to ensure that the cells are efficiently creating the drug product. This process can be very
challenging to systematically control since the incubation process can take many days, and cells
are complex biological entities that are affected by slight changes in environmental conditions.
To ensure that the bioreactor conditions are conducive to the cells producing product, key
attributes are measured by sampling the contents of the bioreactor daily. If attributes are
not in an acceptable range, then steps must be taken to alter the conditions of the bioreactor.
Generally, the sooner the conditions can be adjusted, the better the quantity and quality of
the final drug product. Measuring the attributes takes time. Therefore, there is usually a lag
between the attribute measurements and the corresponding adjustment. This lag can lead to
less and lower-quality products.

Raman spectroscopy is a tool that can measure chemical characteristics (i.e., a chemical
fingerprint) of samples in real-time (Jesus, Löbenberg, and Bou-Chacra 2020; Esmonde-White,
Cuellar, and Lewis 2022; Silge et al. 2022). Using the spectra in a predictive model of the
characteristics of interest would enable real-time knowledge of and corresponding adjustments
to the bioreactor, thus generating higher quality, larger volume drug product.

In the example outlined in this tutorial, several key input parameters were varied systematically
across their operating ranges within each of the 60 small-scale bioreactors for producing a
biological drug. Seven days after the start of the experiment, a sample was collected and
analyzed by Raman spectroscopy. The concentration of the drug product in the sample was
also measured. This analysis aims to understand how predictive Raman spectra can be of the
drug product concentration. If there is a relationship, then the model could be used to signal if
the bioreactor was insufficiently producing a product and prompting remedial steps to increase
production.

Understanding the Data

The first step in any modeling process is to understand the available data.

4



0

10000

20000

30000

1000 2000 3000

Wavenumber (cm−1)

In
te

ns
ity

Figure 1: Raman spectra profiles for each of the 60 samples.

, WTF #4

The only way to be comfortable with your data is to never look at them.

In this application, there is one sample from each of the 60 bioreactors. Raman spectroscopy
has been applied to each sample, and the drug product concentration has been measured.
Figure 1 displays the original Raman spectra. From this figure, we can see that there is an
initial downward trend towards the middle of the wavenumbers, then an upward trend towards
the higher wavenumbers. The intensities are not randomly scattered. Instead, there is a
relationship across wavenumbers with intensity. This relationship indicates that wavenumber
intensities are correlated with each other. In fact, the correlation between the majority of
adjacent wavenumbers is greater than 0.99.

To illustrate this more clearly, let’s examine the relationship among wavenumber measurements
for the first sample. To do this we will create lags of the wavelength measurements. To create
a lag, the data is shifted by a specified number of rows to create a new variable. For example,
to create the first lag, the wavenumber measurements are shifted over by one wavenumber. To
create the second lag, the measurements are shifted by two wavenumbers, and so on. Figure 2
illustrates the correlation between each subsequent lag for the first 1000 lags. Clearly, close
wavenumbers have a high correlation, whereas far wavenumbers have a low correlation. As
we will see, understanding this characteristic will be very important when deciding how to
pre-process the data prior to modeling and which models to train.

5



0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Lag

C
or

re
la

tio
n

Figure 2: The correlation between the original intensities and lagged intensities for the first
sample. As wavenumbers depart, the correlation of the intensities decreases.

With such a large dimensional data set, it is difficult to investigate specific predictors visually.
Additionally, the high degree of between-predictor correlations further decreases the ability
to investigate the data. In the pre-processing section, we’ll look at specific data points using
dimension reduction tools under different types of signal processing regimes.

In addition to understanding the predictors, we should also understand the characteristics
of the response. Examining the response distribution can help determine if a transformation
may be necessary or detect unusual outcome values. Figure 3 presents the histogram of drug
product concentration across the samples. For this data, the distribution is approximately
symmetric and has a range of 85 to 115. Based on this figure, a transformation does not appear
necessary, and there are no unusual samples.

Data Spending

The primary objective of predictive modeling is to use the existing data to develop a model
that predicts new samples as accurately as possible. To achieve this objective, a process must
be implemented that avoids over-fitting to the existing data (Kuhn and Johnson 2013; Hawkins
2004). An over-fit model is one that accurately predicts the response for the data on which
the model was trained but does not accurately predict new data. To avoid over-fitting, we
must construct a model-building process that mimics the prediction process for new samples.
One way to do this would be to split the data into training and test sets. A model could be

6



0.0

2.5

5.0

7.5

10.0

90 100 110
Drug Product Concentration (mg/mL)

F
re

qu
en

cy

Figure 3: The distribution of drug product concentration across samples.

constructed with the training set, then predictive performance could be evaluated with the test
set.

, WTF #5

Always have an independent data set that can contradict what you think you may know.

However, most predictive models must be constructed using a variety of tuning parameter
values. The test set would then need to be evaluated multiple times to assess predictive
performance. When the test set is evaluated multiple times, we are essentially finding a model
that fits the test set. This process leads to over-fitting, and the model performance cannot
be trusted to evaluate the predictive performance on new samples accurately. Therefore, a
single training/test split will not be adequate for building predictive models. Moreover, it
is important to understand that the test set should only be used once to evaluate the final
selected models.

Instead of a single training/test split, we need a process that can be used to evaluate many
tuning parameter values for each of many different models. Figure 4 illustrates a two-layered
process that incorporates the use of resampling. The first layer splits the entire data set into
a training and test set. In general, anywhere between 50% to 80% of the data is randomly
selected for the training data, while the remaining data is placed in the test set. A random
split may be adequate but, in some cases, we can use stratified splitting. This can help keep
the distribution of some variables relatively the same between the training and testing sets.

The training data is further split into resamples as shown in the second layer of Figure 4.
Resampling methods make alternate versions of the training set via additional partitions.
Cross-validation is one of the more popular resampling schemes. It could be used in this layer,
where the data is split into V folds. For example, if 10-fold cross-validation were used in this

7



All Data

Training Testing

AssessmentAnalysis

Resample 1

AssessmentAnalysis

Resample 2

AssessmentAnalysis

Resample B

Figure 4: Illustration of a general data usage scheme that incorporates resampling.

layer, then the training data would be partitioned into 10 folds. The analysis set for the first
resample would contain 9 folds of the data, while the assessment set would contain 1 fold of
the data. A model would be constructed using the 9 folds and would evaluated using the
hold-out fold. To create the analysis set for the second resample, a different combination of
9-folds would be used to construct the model. The model would then be evaluated on the fold
that was not used in the modeling. For illustration, Figure 5 provides an illustration of 3-fold
cross-validation (although V = 10 is a much better choice).

, WTF #6

Creating a test set does not prevent model overfitting when used improperly. We have
seen many examples where a practitioner will use cross-validation to select optimal tuning
parameters, then assess the performance on the test set. This process is then repeated
until acceptable test set performance is found. The test set is no longer an independent
set for assessing model performance.

For the example presented here, a stratified random approach will be used to split the data
into a training (75%) and a test (25%) set. The distribution of the response will be used as
the stratification variable such that an equal proportion of samples will be randomly selected
within each quartile of the distribution.

8



Analysis 
Sets

Assessent 
Sets

Fold 1
Iteration

Fold 2
Iteration

Fold 3
Iteration

14 18

28

17

21

25

22

8

6

30

1

23

27

32

19

117

26

24

16

9

4

29

20

12

13 15

5

10

14 18

28

17

21

25

22

8

6

30

1

23

27

32

19

117

26

24

16

9

4

29

20

12

13 15

5

10

14

29

17

20 21

8

24

28

31

13

26

16

9

5

30

19

15

6

12

27

22 23

25

2

18

7

4

11

10

11

28

18

22 23

7

25

27

42

10

26

16

8

5

29

20

13

6

9

30

19 21

24

1

17

12

3

15

14

14

27

18

21 22

7

23

25

21

12

24

17

10

3

30

19

15

4

11

29

20 26

28

5

16

8

6

13

9

Figure 5: A diagram of how 3-fold cross-validation can be used with 30 data points.

Pre-processing

The raw predictor and response data may not in the best form to allow models reach their full
predictive potential. The original data may contain highly correlated predictors, predictors that
lack information, missing values, multi-category predictors, or highly skewed predictors. Some
models, such as those based on recursive partitioning algorithms, can handle most of these
challenging characteristics. However, many models either cannot be built, or the predictive
performance will be detrimentally impacted when one or more of these characteristics are
present. As a simple example, consider a predictor with three categories: low, medium, and high.
The information, in this form, cannot be ingested by most models. Instead, the information
must be converted into either an ordinal-scaled predictor or two binary variables. Missing data
also wreaks havoc on predictive models because the models require non-missing information.
For an in-depth review of approaches for addressing missing data, see Chapter 8 of Kuhn
and Johnson (2019). Therefore, appropriate pre-processing steps must be taken before model
training.

9



, WTF #7

The stereotypical concept of a model is often confined to the supervised operation of
estimating model parameters (e.g., slope and intercepts in linear regression, etc.).
However, the overall modeling process includes any serious data analysis steps before or
after the model fit. This can include steps such as principal component analysis (PCA)
feature extraction (Abdi and Williams 2010; Massy 1965), imputation (Hasan et al. 2021),
and post hoc calibration.
It is very important to consider each of these estimation procedures as part of “the model”.

As we will see, some characteristics in our CMC data set can be problematic for some models.
A number of pre-processing operations will be evaluated and optimized to counter these data
characteristics.

For example, as shown previously, there is a high degree of correlation between our predictor
values. The high degree of multicollinearity frequently occurs with spectral data but is not
limited to them.

There are a variety of tools to compensate for this issue:

• Use a feature extraction method, such as PCA, to generate alternate versions of the
predictors that capture the same information but are uncorrelated. The PCA versions of
the predictors are used in place of the original columns in the data set.

• Exploit the autoregressive nature of the spectra by providing the model with the differences
between consecutive predictors (i.e., first- or second-derivatives).

• Focus on models that utilize regularization to reduce the effect of the correlations, such
as ridge regression (Hoerl and Kennard 1970).

• Prioritize models that are immune to, or can exploit, the correlation structure of the
predictors.

Partial least squares (PLS) is an example of the last category. The downside to PLS is that
its linear nature has the potential to limit the range of patterns that it can emulate, leading
to models that under-fit. Other models have more potential to predict accurately but can be
severely handicapped by the correlation structure of the predictors.

In practice, different models have affinities for different types of predictor sets. We often have
to pair different predictor sets to different models and discover which strategy works and which
does not.

, WTF #8

The operations that you apply to the predictors before the model are at least as important
as which supervised model you use. Feature engineering (Kuhn and Johnson 2019) is the
process of representing the predictor data in a way that makes the model have to work

10



Original Baseline Corrected

1000 2000 3000 1000 2000 3000 1000 2000 3000

0

10000

20000

30000

wave_number (cm−1)

In
te

ns
ity

Figure 6: The distribution standard deviation of intensity measurements across wavenumbers.

the least to be effective.

Another issue with these data is baseline drift. Recall from Figure 1 that the intensity values
across samples have an initial downward trend towards about wavenumber 2500, then begin
to trend upward. In spectroscopy data, deviations in intensity from zero are commonly
referred to as baseline drift, typically stemming from factors such as measurement system
noise, interference, or fluorescence (Rinnan, Van Den Berg, and Engelsen 2009). Importantly,
these deviations do not relate to the sample’s chemical composition; they are a systematic
nuisance.

Baseline drift is a notable source of measurement variability, where the vertical variability
surpasses that associated with spectral peaks. The excess variability, originating from extraneous
sources contributing to the background, can detrimentally affect models reliant on predictor
variability, such as principal component regression and partial least squares.

It would be ideal if all background trends could be completely removed. A zero intensity value
for a wavenumber would theoretically mean that no molecules were present for that specific
wavenumber. Although measures can be implemented to mitigate interference, fluorescence, and
noise, it remains exceedingly challenging to eliminate background through experimental means
completely. Therefore, the background patterns must be approximated, and this approximation
must be removed from the observed intensities.

A polynomial smoother (Cleveland and Devlin 1988; Luers and Wenning 1971) is one tool that
can be used to approximate the background. Figure 6 illustrates the original spectra for the
first sample, the background as modeled by a polynomial smoother, and the corrected spectra.
Notice that the corrected spectra are now more anchored with intensities at or near zero.

11



differentiation order: 1 differentiation order: 2

w
indow

 size: 15
w

indow
 size: 49

1000 2000 3000 1000 2000 3000

−300

0

300

600

−300

0

300

600

Wavenumber (cm−1)

In
te

ns
ity

Figure 7: The impact of the Savitzky-Golay procedure on the Raman spectra.

Another source of noise for these data is apparent in the variation of the intensity measurements
across wavelengths within a spectrum. This is illustrated by the jagged profile illustrated in
the “Original” and “Corrected” panels of Figure 6. Smoothing splines and moving averages are
two commonly used tools for reducing this type of noise. The moving average is computed
at each point by averaging a specified number of values about that point. For example, the
moving average of size 10 would replace each point with the average of the ten points before
and after the selected point. The original curve becomes smoother as the number of points
averaged together becomes larger. Therefore, we must be careful with the number of points
chosen for the smoothing process. Too few points may not remove enough noise, while too
many may remove important signals.

The Savitzky-Golay (SG) procedure (Savitzky and Golay 1964; Stevens and Ramirez-Lopez
2022) is designed to remove spurious signals by simultaneously smoothing the data while also
centering the overall signal and dampening variability. The procedure is governed by the order
of differentiation, degree of polynomial, and window size. Figure 7 compares the impact of
this procedure for differentiation order of 1 or 2, polynomial order of 2, and a small (15) or
large (49) window size. We’ll use the notation “(d, p, w)” to describe specifics of SG where the
differentiation order, polynomial order, and window size values are used within the parentheses,
such as (1, 2, 45).

Figure 8 displays the correlation across the first 1000 wavenumbers for the original data as

12



window size: 49

window size: 15

0 250 500 750 1000

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Lag

C
or

re
la

tio
n

differentiation order 1 2

Figure 8: The impact of the Savitzky-Golay procedure on the correlation between lagged
wavenumbers.

well as each of the selected Savitzky-Golay transformations. The effect of differentiation and
window size on the correlation across the transformed intensities is clear. When comparing
first-order differentiation to second-order differentiation, second-order differentiation more
rapidly reduces correlation among close wavenumbers up to about the nearest 100 wavenumbers.
Increasing the smoothing window also helps smooth the correlation profiles but does not further
reduce correlation. We will examine the impact of each of these different smoothing parameter
selections on the model performance in the following sections.

For these data, principal component analysis can be conducted on the training set predictors
(after centering and scaling the predictors). This can help us understand if there are any
unwanted systematic effects in the data (such as differences in reagents, instruments, etc.).
Figure 9 shows the results using two components. These components accounted for between
65%-95% of the predictor information, with the exception of the (2, 2, 15) set, which only
captured about 45%. With the exception of a single sample, there are no obvious patterns in
the results to give us pause (such as clustering). That odd sample, number 34, is the same
data point in Figure 1 with relatively low intensity compared to the other spectra. It is unclear

13



(1, 2, 49) (2, 2, 49)

No Pre−Processing (1, 2, 15) (2, 2, 15)

−200 −100 0 100 −200 −100 0 100

−200 −100 0 100
−200

−100

0

100

−200

−100

0

100

PC1

P
C

2

Figure 9: Two-component PCA plots for each pre-processing method. One particular sample
(#34) has extreme values for the first principal compoent across all pre-processing
methods.

how this would affect the results (if at all), so it was retained in the data set. Later analyses
will examine whether this sample is associated with larger residuals.

Machine Learning Models

Over the past half-century, the number and types of models for relating a set of predictors
to a response has rapidly grown. Improvements in computational power and mathematical
complexity have been the primary drivers of this increase. Traditionally, model complexity is
generally tied to the number of parameters of a model. As the number of model parameters
increases, so does the ability of a model to adapt and morph to the relationship between
predictors and the response. For example, the basic partial least squares model has one tuning
parameter and is effective at finding a linear relationship between predictors and the response.
However, this method is ineffective at finding non-linear relationships. In contrast, consider
a simple single-layer, feed-forward neural network. This model can easily have many more
parameters than the number of predictors. For the example data, the number of predictors
already exceeds the number of samples. Therefore, even the simplest of neural network models
can over-fit the available data without appropriate precautions.

14



, WTF #9

Most ML models (or pre-processors) have tuning parameters: important parameters that
cannot be directly estimated from the data (e.g., unlike a regression slope).
These parameters usually govern how complex a model can become. Hence, choosing
appropriate tuning parameter values is a pivotal operation since it controls if the model
over- or under-fits the data.

As part of the modeling process, we need to find a set of values for the tuning parameters of
each model that effectively uncovers an optimal predictor-response relationship. As mentioned
in the section on data splitting, the search for an optimal model must be done in the context
of cross-validation to protect the model-building process from over-fitting to the available data.
The next question we must address is what values of the tuning parameters should be evaluated.
A brute-force approach would be to evaluate many different tuning parameter values and select
the optimal one. More sophisticated techniques are also available that utilize gradient descent,
genetic algorithms, or principles of experimental design to find an optimal set of parameter
values more efficiently (Ali et al. 2023; Ippolito 2022).

How should the parameter sets be evaluated? Answering this question depends on the response.
When the response is continuous, then the two most common performance metrics are R2 and
root mean square error (RMSE) (Neter et al. 1996). Many more options are available when
the response is categorical, and the user must be keenly aware of response characteristics when
selecting the performance metric. For example, if a categorical outcome is highly imbalanced,
then selecting accuracy as the metric is not advisable. Specifically, it is possible to get high
accuracy simply by classifying all samples into the majority class. Instead, a metric like the
Kappa statistic (Cohen 1960) or area under the receiver operating characteristic curve (Nahm
2022) may be better choices for a performance metric since these measurements force a model
to predict the minority class more accurately.

In this manufacturing example, the response is continuous, and the metric of RMSE will be
used to assess predictive performance.

, WTF #10

The performance metric that you choose is important; poor choices can guide you to a
“correct” answer that might be inappropriate.
For example, R2 is a measure of correlation but not accuracy. Optimizing it can yield
models that are inaccurate at the high and low regions of the outcome distribution.

While there are many models to choose from, we will compare four modeling techniques for this
data: partial least squares (PLS), random forest (RF), Cubist, and support vector machines
(SVM). These models were selected to illustrate a range of types of models. We will now
provide a high-level explanation of each of these models along with additional references.

15



Partial Least Squares

Spectroscopy data has traditionally been modeled using PLS (Htet et al. 2021; Esmonde-White
et al. 2017). PLS is a logical technique to use for this type of data because it naturally
handles highly correlated predictors. This model seeks to find linear combinations of the
original predictors that have an optimal correlation with the response by using as few linear
combinations as possible (Wold, Sjöström, and Eriksson 2001). Specifically, PLS finds linear
combinations that summarize variability across the predictors while simultaneously optimizing
their correlation with the response. The primary tuning parameter for PLS is the number of
linear combinations, or latent variables, to retain.

Random forest

Random forest is a recursive partitioning that is built on an ensemble of trees (Breiman 2001;
Seifert 2020). A single tree is constructed by recursively splitting the data into subsets with
greater purity in the response. The RF model provides an improvement over a single tree by
reducing variance through an ensemble of trees. Specifically, an RF model does the following
process many times: selects a bootstrap sample of the data and builds a tree on the bootstrap
sample. A randomly selected number of predictors is chosen at each split to construct each
tree. An optimal predictor within the sample is selected, and the routine proceeds to the next
split. Prediction for a new sample is the average value across the entire ensemble of trees. RF
has two primary tuning parameters: the number of data points within a tree node required to
split the data further and the number of randomly selected predictors for each split (usually
referred to as mtry).

Cubist

The Cubist model is also constructed from an initial ensemble of trees but in a very different,
more complex way than RF (Quinlan 1987). It uses a model tree rather than a partitioning
tree as its foundation. The primary difference between a partitioning tree and a model tree
is that a model tree constructs a linear model in each terminal node. The paths through the
trees to the terminal node are rules, and these rules are further pruned and/or simplified.

Cubist creates an ensemble of individual rule-based models in a manner that is similar, but
not the same as, boosting (Kuhn and Johnson 2013). Once the ensemble has been completed,
predictions from the samples’ closest neighbors in the training set can further adjust the model
predictions (Quinlan 1993). Cubist has two tuning parameters: the number of committees and
the number of nearest neighbors.

16



Support vector machines

Support vector machines are a modeling technique that uncovers the relationship between
the predictors and the response using samples that lie outside of a conceptual margin (a
boundary about the optimal relationship) (Drucker et al. 1996; Ullah et al. 2018). Several
nonlinear versions of SVMs exist; the one implemented in this analysis uses a radial basis
function (RBF). For the radial-basis SVM, the number of samples allowed to be outside of the
margin is controlled by the cost parameter, and the RBF dispersion parameter controls the
surface’s flexibility. Therefore, the radial basis SVM has the flexibility to identify a non-linear
relationship between the predictors and the response.

SVMs are the most difficult to tune out of the four models described here. The two tuning
parameters tend to exhibit traditional interaction effects so that there can be a small region of
good performance within a larger area of unsuitable models; see, for example, Section 14.1 of
Kuhn and Silge (2022).

Modeling Strategy

For each model, a set of 25 tuning parameter combinations are evaluated. For PLS and
random forest, we’ll only tune a single parameter (the number of PLS components and mtry,
respectively). For support vector and Cubist models, a space-filling design (Joseph 2016) is
used to create two-dimensional grids of the parameter space for each model. These grids are
created using Latin hypercube designs that fill the rectangular parameter space. They often use
an additional criterion to reduce the chances that any of the tuning parameter combinations
are too close (i.e., redundant). The modeling process has 3-4 parameters: 1-2 from the models
themselves and two from the pre-processing (i.e., differentiation order and the smoothing
window size).

For each tuning parameter combination, 5 repeats of 10-fold cross-validation are used to
appropriately estimate the RMSE for future samples. We will examine the relationship between
the tuning parameters and the estimated RMSE to help understand the performance patterns
and to choose reasonable values for the parameters.

, WTF #11

Despite the literature, optimizing hyper-parameters using grid search is effective and can
be very efficient using advanced (but easy to use) computational and statistical methods

One computational tool for speeding up grid search is parallel processing. None of the 1,250
models estimated in the grid search depend on any other and, as such, can be executed
simultaneously on different computer CPU cores. Software can seamlessly facilitate this, and it

17

https://www.tmwr.org/iterative-search#svm


0

2

4

6

8

0 25 50 75 100
Ensemble Size

N
um

be
r 

of
 N

ea
re

st
 N

ei
gh

tb
or

s

Figure 10: An example of a space-filling design for two tuning parameters in a Cubist model.

is not uncommon to see at least 5-fold reductions in the computational time using this method
(Kuhn and Silge 2022).

Also, there are statistical methods to evaluate 25 models without having to estimate all of
them. For example, for some models, the most complex model can be fit, and results from
sub-models can be derived at no extra cost. For example, if a Cubist model is created with an
ensemble size of 50, we can get predictions from the same model for sizes 1 - 49 at negligible
computational cost. Additionally, racing methods (Kuhn 2014) can conduct interim analyses
during grid search and remove tuning parameter combinations that are unlikely to be chosen as
the best results. This can enable users to screen a large number of models and pre-processing
methods quickly.

Finally, grid search had been considered inefficient because of the assumption that regular (i.e.,
full factorial) grids were used. If we evaluated L values of each of M tuning parameters, the
full factorial set of LM combinations can become very large. This is no surprise to most CMC
statisticians and engineers. However, as previously mentioned, the better design choices for
grid search are space-filling designs. It is difficult to quantify the positive impact these designs
have had on optimizing models in terms of efficiency and efficacy. Figure 10 shows an example
Audze-Eglais design from Husslage et al. (2011) for the two Cubist tuning parameters and 25
candidate points.

An alternate tool called Bayesian optimization (Gramacy 2020) was used to optimize the
support vector machine models. It starts with a small grid of results, in our case, a space-filling
design with ten tuning parameter combinations. These initial results are used as substrate for a
Gaussian Process (GP) model (Rasmussen, Williams, et al. 2006) where the resampled RMSE
values are the outcomes, and the SVM tuning parameters (cost and RBF dispersion) are the

18



2.5

5.0

7.5

0 5 10 15 20 25
Number of PLS Components

R
es

am
pl

ed
 R

M
S

E

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00
Proportion of Randomly Sampled Predictors

No Pre−Processing (1, 2, 15) (2, 2, 15) (1, 2, 49) (2, 2, 49)

Figure 11: The tuning parameter profiles for partial least squares and random forest.

predictors. The GP then predicts the next tuning parameter combination to resample. Once
those results are available, the process repeats. Fifteen iterations of this iterative optimization
process were used to evaluate a total of 25 tuning parameter combinations for the SVM
models.

Model Tuning Results

First, let’s examine the PLS and RF model results, each of which optimized a single tuning
parameter. Figure 11 (left) illustrates the relationship between the number of PLS components
and the RMSE. There are separate profiles for the different Savitzky-Golay configurations.
RMSE generally decreases as the number of components increases regardless of whether or
not the spectra were pre-processed. Oddly, the (1, 2, 49) configuration showed degradation
in performance after 8 components. The model with the lowest RMSE uses the (1, 2, 15)
pre-processor and 12 components. There was a plateau of RMSE after 12 components but
choosing fewer components is better than adding unnecessary complexity.

Figure 11 (right) displays the tuning parameter profile for the RF model. Since the different
pre-processing methods can produce different numbers of predictors, mtry is represented here
as a proportion of the number of possible predictors. The value of mtry is fairly irrelevant so
long as at least 10% of the predictors are randomly sampled at each split. The numerically best
random forest model used 1,273 predictors with pre-processing strategy (2, 2, 49), although
there is obviously a range of values with the same performance (as well as another pre-processor).

19



2.0

2.5

3.0

3.5

0 25 50 75 100
Ensemble Size

R
es

am
pl

ed
 R

M
S

E

2.0

2.5

3.0

3.5

0.0 2.5 5.0 7.5
Number of Nearest Neighbors

No Pre−Processing (1, 2, 15) (2, 2, 15) (1, 2, 49) (2, 2, 49)

Figure 12: The tuning parameter profiles for the Cubist model.

The optimal RF model (with RMSE 3.08) performs poorly compared to the optimal PLS model
(RMSE = 1.77).

The Cubist performance profiles are shown in Figure 12. The left panel shows that, after a
few initial iterations, choice of the ensemble size is not crucial On the right, the main trend in
the number of nearest neighbors is that 1-2 neighbors is a poor choice; otherwise there is very
little difference in the RMSE profiles. Across pre-processing configurations, the (2, 2, 49) SG
configuration, along with 9 committees and 7 neighbors, appears to work best with this model
with an estimated RMSE of 1.79. Like the random forest results, pre-processing has a larger
impact than the model’s tuning parameter(s).

Recall that SVM models the parameter space; there are sometimes isolated regions of good
performance. An initial grid of 10 tuning parameter candidates were selected before proceeding
to the iterative calculations. Across all pre-processing methods, the best RMSE from the initial
phase was 4.91, a substandard result.

Figure 13 illustrates the process of the iterative Bayesian search. A few of the profiles show
a progressive reduction in the RMSE as the algorithm moves through the parameter space
defined by the SVM cost and RBF dispersion parameters. Other profiles show some sporadic
increases/jumps in RMSE. Bayesian optimization is a global, derivative free technique and may
make discordant jumps as it explores the parameter space. In the end, the average reduction
in RMSE across the pre-processing settings was 3.1-fold, indicating that the optimization was
effective. There are a few pre-processing methods with effectively equal results. The numerically
best corresponding to SG settings of (2, 2, 49), a cost value of 29.7, and a radial basis function
dispersion parameter of 0.0000445 The corresponding RMSE was estimated to be 1.8.

20



3

5

7

0 5 10 15
Search Iteration

R
es

am
pl

ed
 R

M
S

E

No Pre−Processing (1, 2, 15) (2, 2, 15) (1, 2, 49) (2, 2, 49)

Figure 13: Progress of Bayesian optimization for the SVM parameters. Iteration zero reflects
the best candidate value from the initial grid search.

There are a few significant trends in these results. First, random forest, with these particular
pre-processing methods, was uniformly the worst model. In terms of pre-processing:

• The (2, 2, 15) SG configuration was also particularly ineffective across models.

• The other pre-processed versions of the data had decent, if not fine, results.

• No pre-processing, in some cases, could work well with these models and this data.

Given the confidence intervals on the best RMSE, multiple pre-processing choices have equal
performance.

, WTF #12

It is a common situation when multiple tuning parameter combinations have approximately
the same level of performance within and between models. Likewise, it is rare that a
single type of model completely outclasses the others.

Let’s compare the observed versus predicted values across the five pre-processing sets and
three models. Figure 15 highlights some interesting characteristics. First, there is one sample
that tends to have very large residuals. This is our old friend sample 34, last seen in Figure 9.
Interestingly, some models are more sensitive to this sample than others. The SVM model is
remarkably robust to the sample. It may be because of the nature of support vector machines:

21



2

3

4

5

No Pre−Processing (1, 2, 15) (2, 2, 15) (1, 2, 49) (2, 2, 49)
pre−processing

B
es

t R
M

S
E

Partial Least Squares Random Forest Cubist Support Vector Machine

Figure 14: Cross-validation predictive performance using the optimal tuning parameter settings
for each predictor set and model. The colored regions are approximate 90% confidence
intervals.

they do not use all of the training set data to define the prediction equation. It is possible that
sample 34 is not one of the support vectors for this model.

At this point, the sample is very interesting, and we would consult with the spectroscopist
to determine if it is valid. That could be an issue with reagents or instrumentation. For our
analysis here, we’ll leave it alone and pick a model/pre-processing combination that appears
unaffected.

We must pick a pre-processing scheme and model type to define the official model. We’ll choose
the PLS model with 12 components and the (1, 2, 15) pre-processing settings. The performance
of this model is exceptional, especially given that a linear model has limited complexity
(generally, simpler is better). The final model fit uses the optimized tuning parameters in
conjunction with the entire training set of 45 samples.

Now that we have the official model fit, our next step is to verify the results using the test
set.

As an alternative to choosing between models, a stacking ensemble could selectively blend all
of our existing models (and pre-processing methods) into a single model fit. These models can

22



No Pre−Processing (1, 2, 15) (2, 2, 15) (1, 2, 49) (2, 2, 49)

P
artial Least S

quares
C

ubist
S

upport V
ector M

achine

90 100 110 90 100 110 90 100 110 90 100 110 90 100 110

70

80

90

100

110

70

80

90

100

110

70

80

90

100

110

Observed DP Concentration

P
re

di
ct

ed
 D

P
 C

on
ce

nt
ra

tio
n

Figure 15: Comparison of observed versus hold-out predicted values from cross-validation for
the optimal tuning parameter settings for three models. One challenging sample to
predict is highlighted in red.

dynamically choose which methods to include or exclude to maximize performance (Breiman
1996; Smyth and Wolpert 1999).

, WTF #13

Stacking is worth trying if the training set is large. In these situations, it typically yields
ensembles with slightly better results. Its importance has been inflated due to success in
machine learning competitions.

Test Set Results

Figure 16 shows the observed and predicted drug product concentrations for the 15 samples in
the test set. The sample size is small, but there does appear to be some excess variation in the
predictors for smaller values. Despite this, the results seem reasonably good.

The resulting test set RMSE was 1.93 (compared to the resampling estimate of 1.77). The
corresponding test set R2 was 95.8%.

23



90

100

110

90 100 110
Observed DP Concentration

P
re

di
ct

ed
 D

P
 C

on
ce

nt
ra

tio
n

Figure 16: Observed and predicted values for the test set.

Post-Modeling Activities

Assuming our final model will be used on additional unknown samples in the future, there
are a few more tasks. First is documentation. This should involve descriptions of the training
and test sets, their provenance, the process of optimizing and choosing the final model, and a
description of its use case.

The amount of documentation and what should be included depends on how the predictions
will be used and by whom. Speaking from experience regarding models for ADMET endpoints,
the consumers of the model predictions were very focused on results for yet-to-be-synthesized
molecules. Inconsistencies in predictions (real or perceived) could lead to intense interest in
the model’s particulars. Good documentation about what the model was good for (and not
suitable for) was critical. Model Cards (Mitchell et al. 2019) offer a good template for getting
started.

, WTF #14

Defining and documenting the model’s intended use is essential and is called its applicability.
If a wide variety of people can access the model, it is hard to control who will use it and
for what purpose. Setting intentional limits of relevance is a good idea.

In some cases, explaining how the model works and why it made specific predictions is
necessary. Unfortunately, these questions may be asked if a prediction fails to meet preconceived

24



expectations. Simpler models, such as PLS, are easier to explain. Regardless of model
complexity, there is a rich field of research on model explainers. See, for example, Molnar
(2020) and Biecek and Burzykowski (2021) for tools to help users understand the model and
its results. Finally, if a model is put into production, we must ensure it still meets its stated
goals (i.e., applicability). If more labeled samples are being accrued, a protocol for monitoring
performance over time is critical in case the performance statistics begin to drift away from
their original resampling/test set estimates.

, WTF #15

Models do not drift; data can change over time, as can the population being predicted.
Tools called applicability domain methods (Netzeva et al. 2005; Gadaleta et al. 2016)
help measure how far (if at all) a new sample is from the original training set (i.e.,
extrapolation). These values can accompany a new sample prediction to help gauge how
dodgy a new sample may be.

The nature of drug discovery causes the type, structure, and characteristics of molecules to
change over time; medicinal chemists are designing therapies entirely different from those
created in decades past. Physiochemical properties fluctuate over time; knowing how the model
handles these changes is vital.

There is also the idea of concept drift: the purpose of a model can also change. For example,
suppose that we develop an ADMET ML model for predicting blood-brain barrier permeation
based on existing therapeutic areas. Suppose the company purchases other discovery groups
with a strong neuroscience group (where there was none). The original model was intended to
tell when a molecule unintentionally crossed the barrier. Now, there is increased interest in
molecules that should cross the barrier. At this point, an assessment should be made as to
whether a separate model is required for each use case.

Conclusions

This tutorial was intended to provide readers with a realistic worked example of machine
learning with a CMC application and demonstrate that there is still a fair amount of art in this
particular area of science. The content in most of our WTF items is borne out of experience.
Our advice for practitioners starting out is to read as much literature as possible, try many
different approaches, and be very dogmatic about thoroughly validating your results.

25



Software and Data

The code and data used to create this tutorial are found on GitHub2. R version 4.2.2 (2022-
10-31) was used to create the analyses, and Quarto version 1.3.450 was used to create the
pre-print document and website. The GitHub repository lists specific R package versions that
were used.

References
Abdi, Herve, and Lynne Williams. 2010. “Principal Component Analysis.” Wiley Interdisci-

plinary Reviews: Computational Statistics 2 (4): 433–59.
Ali, Yasser A, Emad Mahrous Awwad, Muna Al-Razgan, and Ali Maarouf. 2023. “Hyper-

parameter Search for Machine Learning Algorithms for Optimizing the Computational
Complexity.” Processes 11 (2): 349.

Biecek, Przemyslaw, and Tomasz Burzykowski. 2021. Explanatory Model Analysis: Explore,
Explain, and Examine Predictive Models. CRC Press.

Borisov, Vadim, Tobias Leemann, Kathrin Sessler, Johannes Haug, Martin Pawelczyk, and
Gjergji Kasneci. 2022. “Deep Neural Networks and Tabular Data: A Survey.” IEEE
Transactions on Neural Networks and Learning Systems, 1–21.

Breiman, Leo. 1996. “Stacked Regressions.” Machine Learning 24: 49–64.
———. 2001. “Random Forests.” Machine Learning 45: 5–32.
Charu, Aggarwal. 2018. Neural Networks and Deep Learning: A Textbook. Spinger.
Cleveland, William S, and Susan J Devlin. 1988. “Locally Weighted Regression: An Approach

to Regression Analysis by Local Fitting.” Journal of the American Statistical Association
83 (403): 596–610.

Cohen, Jacob. 1960. “A Coefficient of Agreement for Nominal Scales.” Educational and
Psychological Measurement 20 (1): 37–46.

Drucker, Harris, Christopher J Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik.
1996. “Support Vector Regression Machines.” Advances in Neural Information Processing
Systems 9.

Esmonde-White, Karen A, Maryann Cuellar, and Ian R Lewis. 2022. “The Role of Raman
Spectroscopy in Biopharmaceuticals from Development to Manufacturing.” Analytical and
Bioanalytical Chemistry, 1–23.

Esmonde-White, Karen A, Maryann Cuellar, Carsten Uerpmann, Bruno Lenain, and Ian R
Lewis. 2017. “Raman Spectroscopy as a Process Analytical Technology for Pharmaceutical
Manufacturing and Bioprocessing.” Analytical and Bioanalytical Chemistry 409 (3): 637–
49.

Gadaleta, Domenico, Giuseppe Felice Mangiatordi, Marco Catto, Angelo Carotti, and Orazio
Nicolotti. 2016. “Applicability Domain for QSAR Models: Where Theory Meets Reality.”

2https://github.com/kjell-stattenacity/Tutorial

26

http://cran.r-project.org
http://cran.r-project.org
https://quarto.org
https://github.com/kjell-stattenacity/Tutorial


International Journal of Quantitative Structure-Property Relationships (IJQSPR) 1 (1):
45–63.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT press.
Gorishniy, Yury, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. 2021. “Revisiting

Deep Learning Models for Tabular Data.” Advances in Neural Information Processing
Systems 34: 18932–43.

Gramacy, Robert B. 2020. Surrogates: Gaussian Process Modeling, Design, and Optimization
for the Applied Sciences. CRC press.

Hasan, Md Kamrul, Md Ashraful Alam, Shidhartho Roy, Aishwariya Dutta, Md Tasnim Jawad,
and Sunanda Das. 2021. “Missing Value Imputation Affects the Performance of Machine
Learning: A Review and Analysis of the Literature (2010–2021).” Informatics in Medicine
Unlocked 27: 100799.

Hastie, T, R Tibshirani, and J Friedman. 2017. The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer.

Hawkins, D. 2004. “The Problem of Overfitting.” Journal of Chemical Information and
Computer Sciences 44 (1): 1–12.

Hoerl, Arthur E, and Robert W Kennard. 1970. “Ridge Regression: Biased Estimation for
Nonorthogonal Problems.” Technometrics 12 (1): 55–67.

Htet, Tar Tar Moe, Jordi Cruz, Putthiporn Khongkaew, Chaweewan Suwanvecho, Leena
Suntornsuk, Nantana Nuchtavorn, Waree Limwikrant, and Chutima Phechkrajang. 2021.
“PLS-Regression-Model-Assisted Raman Spectroscopy for Vegetable Oil Classification and
Non-Destructive Analysis of Alpha-Tocopherol Contents of Vegetable Oils.” Journal of Food
Composition and Analysis 103: 104119.

Husslage, Bart GM, Gijs Rennen, Edwin R Van Dam, and Dick Den Hertog. 2011. “Space-
Filling Latin Hypercube Designs for Computer Experiments.” Optimization and Engineering
12: 611–30.

Ippolito, Pier Paolo. 2022. “Hyperparameter Tuning: The Art of Fine-Tuning Machine and
Deep Learning Models to Improve Metric Results.” In Applied Data Science in Tourism:
Interdisciplinary Approaches, Methodologies, and Applications, 231–51. Springer.

Jesus, José Izo Santana da Silva de, Raimar Löbenberg, and Nadia Araci Bou-Chacra. 2020.
“Raman Spectroscopy for Quantitative Analysis in the Pharmaceutical Industry.” Journal
of Pharmacy and Pharmaceutical Sciences 23 (1): 24–46.

Joseph, V. 2016. “Space-Filling Designs for Computer Experiments: A Review.” Quality
Engineering 28 (1): 28–35.

Kadra, Arlind, Marius Lindauer, Frank Hutter, and Josif Grabocka. 2021. “Regularization Is
All You Need: Simple Neural Nets Can Excel on Tabular Data.” arXiv 536.

Kuhn, Max. 2014. “Futility Analysis in the Cross-Validation of Machine Learning Models.”
arXiv.

Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive Modeling. Springer.
———. 2019. Feature Engineering and Selection: A Practical Approach for Predictive Models.

CRC Press.
Kuhn, Max, and Julia Silge. 2022. Tidy Modeling with R. O’Reilly Media, Inc.
Luers, James K, and Robert H Wenning. 1971. “Polynomial Smoothing—Linear Vs Cubic.”

27



Technometrics 13 (3): 589–600.
Massy, William. 1965. “Principal Components Regression in Exploratory Statistical Research.”

Journal of the American Statistical Association 60: 234–46.
Mitchell, Margaret, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben

Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019. “Model Cards
for Model Reporting.” In Proceedings of the Conference on Fairness, Accountability, and
Transparency, 220–29.

Molnar, Christoph. 2020. Interpretable Machine Learning. Independently published.
Nahm, Francis Sahngun. 2022. “Receiver Operating Characteristic Curve: Overview and

Practical Use for Clinicians.” Korean Journal of Anesthesiology 75 (1): 25–36.
Neter, John, Michael H Kutner, Christopher J Nachtsheim, William Wasserman, et al. 1996.

“Applied Linear Statistical Models.”
Netzeva, Tatiana I, Andrew P Worth, Tom Aldenberg, Romualdo Benigni, Mark TD Cronin,

Paola Gramatica, Joanna S Jaworska, et al. 2005. “Current Status of Methods for Defining
the Applicability Domain of (Quantitative) Structure-Activity Relationships.” Alternatives
to Laboratory Animals 33 (2): 155–73.

Quinlan, J. Ross. 1987. “Simplifying Decision Trees.” International Journal of Man-Machine
Studies 27 (3): 221–34.

———. 1993. “Combining Instance-Based and Model-Based Learning.” Proceedings of the Tenth
International Conference on Machine Learning, 236–43.

Rasmussen, Carl Edward, Christopher KI Williams, et al. 2006. Gaussian Processes for
Machine Learning. Vol. 1. Springer.

Rinnan, Åsmund, Frans Van Den Berg, and Søren Balling Engelsen. 2009. “Review of the Most
Common Pre-Processing Techniques for Near-Infrared Spectra.” TrAC Trends in Analytical
Chemistry 28 (10): 1201–22.

Savitzky, Abraham, and Marcel JE Golay. 1964. “Smoothing and Differentiation of Data by
Simplified Least Squares Procedures.” Analytical Chemistry 36 (8): 1627–39.

Seifert, Stephan. 2020. “Application of Random Forest Based Approaches to Surface-Enhanced
Raman Scattering Data.” Scientific Reports 10 (1): 5436.

Shwartz-Ziv, Ravid, and Amitai Armon. 2022. “Tabular Data: Deep Learning Is Not All You
Need.” Information Fusion 81: 84–90.

Silge, A, Karina Weber, D Cialla-May, L Müller-Bötticher, D Fischer, and J Popp. 2022.
“Trends in Pharmaceutical Analysis and Quality Control by Modern Raman Spectroscopic
Techniques.” TrAC Trends in Analytical Chemistry 153: 116623.

Smyth, Padhraic, and David Wolpert. 1999. “Linearly Combining Density Estimators via
Stacking.” Machine Learning 36: 59–83.

Stevens, Antoine, and Leornardo Ramirez-Lopez. 2022. An Introduction to the Prospectr
Package.

Ullah, Rahat, Saranjam Khan, Samina Javaid, Hina Ali, Muhammad Bilal, and Muhammad
Saleem. 2018. “Raman Spectroscopy Combined with a Support Vector Machine for
Differentiating Between Feeding Male and Female Infants Mother’s Milk.” Biomedical
Optics Express 9 (2): 844–51.

Wold, Svante, Michael Sjöström, and Lennart Eriksson. 2001. “PLS-Regression: A Basic Tool

28



of Chemometrics.” Chemometrics and Intelligent Laboratory Systems 58 (2): 109–30.

29


	Introduction
	Experimental setting
	Understanding the Data
	Data Spending
	Pre-processing
	Machine Learning Models
	Partial Least Squares
	Random forest
	Cubist
	Support vector machines

	Modeling Strategy
	Model Tuning Results
	Test Set Results
	Post-Modeling Activities
	Conclusions
	Software and Data
	References

